<Surface treatment of porous membrane >
We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). Even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance.
In this work, a facile and reproducible fabrication method was developed to render the Janus property to arbitrary porous substrates. First, a hydrophobic surface was obtained by depositing a fluoropolymer, poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PHFDMA), on various porous substrates such as polyester fabric,
nylon mesh, and filter paper. After that, by simply floating the PHFDMA-coated substrates on KOH(aq) solution, only the face of the PHFDMA-coated substrate in contact with the KOH(aq) solution became hydrophilic by the conversion of the fluoroalkyl ester group in the PHFDMA to hydrophilic carboxylic acid functionality.
The hydrophilized face was able to easily absorb water, showing a contact angle of less than 37°. However, the top side of the PHFDMA-coated substrate was unaffected by the exposure to KOH(aq) solution and remained hydrophobic.
<Particle self-assembly >
The three-dimensional (3D) clustering of Janus cylinders is controlled by simply tuning the cylinder geometry and hydrophobic interactions. Janus cylinders were prepared by combining two approaches: micromolding and initiated chemical vapor deposition (iCVD). Hydrophilic cylinders with a flat- or convex-top curvature were prepared by micromolding based on
surface tension-induced flow. The iCVD process then provides a hydrophobic domain through the simple and precise deposition of a polymer film on the top surface, forming monodisperse Janus microcylinders. We use these Janus cylinders as building blocks to form 2D or 3D clusters via hydrophobic interactions in methanol. We investigate how cylinder geometry or degree of hydrophobic interaction affects the resulting cluster geometries. The convex-top Janus cylinders lead to 3D clustering through tip-to-tip interactions, and the flat-top Janus cylinders lead to 2D clustering through face-to-face attraction. The number of Janus cylinders in 3D clusters is tuned by controlling the degree of hydrophobic (or hydrophilic) interaction.
<Surface wettability control >
Exquisite surface wettability control of separation system surface is required to achieve separation of liquids with low surface tension difference. Here, we demonstrate a series of surface-energy-controlled homogeneous copolymer films to control the surface wettability of polyester fabric, utilizing a vapor-phase process, termed as initiated chemical vapor deposition (iCVD). The homogeneous copolymer films consist of a hydrophobic polymer, poly(2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane), pV4D4, and a hydrophilic polymer, poly(4-vinylpyridine), p4VP. Because the mixing of two or more components is always favorable in vapor phase, the iCVD process allows the formation of homogeneous copolymers from two immiscible, hydrophilic/hydrophobic monomer pairs, which is highly challenging to achieve in liquid phase. Simply by tuning the flow rate ratio of monomer pairs, a series of homogeneous copolymers with systematically controlled surface energy were formed successfully. The fabricated separation system could separate water (surface energy = 72.8 mJ/m2), glycerol (64 mJ/m2), ethylene glycol (48 mJ/m2), and olive oil (35.1 mJ/m2) sequentially with excellent selectivity, just by choosing a copolymer-coated polyester fabric with proper surface energy.
For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil–water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.